one in one gion where hrity) *U* of etly to the where *ST* in be used e-temperativolume of unction of to use the polated for

tions to be e have been case they n length of acceleration volves the change of of position st two are the effect of appreciable. serving the of one of the ain pressure pressure of placed 0.025

eter; the

	U/S	
-	0.0055	
	.173	
	.143	
	.293	
	.390	
	₃ 467	

etion of 0.05 ve correction ressure. The acceleration,

 $\binom{2}{0}^{\frac{1}{2}}$.

stant equal to re, amounting is 1 sec. but 10 seconds.

LIED PHYSICS

Table I contains the data used to obtain the calibration curve of Fig. 2. Kerosene, a light mineral oil, and a series of four graded oils of viscosity S.A.E. No. 10, No. 20, No. 30, and No. 40, respectively, were used as calibrating liquids. The values of the kinematic viscosities of these liquids were directly determined at 100°F by Mr. C. E. Fink of our Petroleum Refining Laboratory. The author is indebted to him for carefully checking the viscosities in the standard viscometers of that laboratory. The density of the ball and the densities of the calibrating oils were determined in a conventional manner by weighing in specific gravity bottles.

Table II summarizes the data that were derived by computation. They were obtained graphically by plotting on a large scale the computed values of μ against pressure, drawing smooth curves through the plotted points, and then reading from the curves the values of μ corresponding to every one or two thousand units of pressure. The principal sources of error in these data are in the determination of the pressures and the roll times. The average inaccuracy of the former amounts to about 1 percent, while the latter, expressed in the unit of coefficient of viscosity, may be as high as 3 percent when the roll time is as low as 2 or 3 seconds. Another way of estimating the erratic error in the determinations is to consider the deviations of the computed values of μ from the curves that were

TABLE II. Viscosity-pressure data.

	VISCOSITY IN CENTIPOISES		
Pressure (lb./in.2)	Penn.	Okla.	Cal.
•	100°F	,	
14.2	83	94	114
1000	91	119	146
2000	106	145	183
3000	123	175	225
4000	145	209	278
5000	169	247	346
6000	198	293	433
7000	232	344	533
8000	268	405	655
9000	310	475	811
10×10^{3}	357	557	995
12	485	775	1540
14	654	1060	2200
16	850	1430	2200
18	1100	1940	
20	1420		
22	1830		

	VISC	onlinued).	POISES
Pressure (lb./in.²)	Penn.	Okla.	Cal.
	130°I	7	1
14.2 1000 2000 3000 4000 5000 6000 7000 8000 9000 10×10 ³ 12 14 16 18 20 22 24 26 28 30 32 34	41 51 60 64 73 82 91 100 111 124 143 191 249 315 408 524 663 830 1030 1260 1560 1960 2460	43 54 66 75 85 95 102 118 131 149 170 231 318 428 564 740 940 1170 1500 2030 2840	42 57 68 80 99 124 154 190 232 281 340 490 692 960 1320 1830 2510 3400 4540
	210.2°I		
14.2 1000 2000 3000 4000 5000 6000 7000 8000 9000 10×10³ 12 14 16 18 20 22 24 26	7 9 10 13 15 17 19 20 22 24 26 31 36 44 52 62 73 87	10 12 14 16 18 20 22 24 27 30 33 40 50 59 71 85 104 128 154	13 15 17 19 21 24 25 27 30 33 37 45 55 70 90 116 153 202 260

123

145

171

202

242

287

337

393

457

535

627

732

846

32

36

46

52

185

219

262

314

375

454

549

654

770

890

1010

1150

1290

1430

510

846

1080

1400

1790

2270

2890